Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
Sheldrick, G. M. (1990). SHELXTL-Plus. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Univ. of Göttingen, Germany.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
Siemens (1989). P3 Data Collection Program. Release 4.12. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1995). C51, 2496-2498

Non-Coordination of the Dimethylamino Group in a Dinuclear Molybdenum Complex with the 1-[2-(Dimethylamino)-ethyl]-2,3,4,5-tetramethylcyclopentadienyl Ligand

Hans-Georg Stammler, Peter Jutzi, Beate Neumann and Marc Oliver Kristen

Fakultät für Chemie, Universität Bielefeld, 33615 Bielefeld, Germany
(Received 18 January 1995; accepted 22 May 1995)

Abstract

The title compound, tetracarbonylbis $\left\{\eta^{5}-1-[2\right.$-(dimethylamino) ethyl $]-2,3,4,5$ - tetramethylcyclopentadienyl $\}$ dimolybdenum $(\mathrm{Mo}-\mathrm{Mo}), \quad\left[\mathrm{Mo}_{2}\left(\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{~N}\right)_{2}(\mathrm{CO})_{4}\right]$, is the first molybdenum complex incorporating the hemilabile 1-[2-(dimethylamino)ethyl]-2,3,4,5-tetramethylcyclopentadienyl ligand. The Mo-Mo distance of 2.510 (1) \AA is a typical triple-bond distance. The dimethylamino group of the side chain is clearly not coordinated to the metal atom.

Comment

Transition metal complexes incorporating the 1-[2-(di-methylamino)ethyl]-2,3,4,5-tetramethylcyclopentadienyl ligand $\left(\mathrm{Cp}^{*}\right)$ (Jutzi \& Dahlhaus, 1993) are attracting increased interest because the dimethylamino group of the side chain can coordinate to the central metal in an intramolecular manner. Various examples of these complexes have been published (Jutzi, Dahlhaus \& Kristen, 1993; Jutzi, Kristen, Dahlhaus, Neumann \& Stammler, 1993; Jutzi, Kristen, Neumann \& Stammler, 1994). In all these cases, only complexes with an intramolecularly coordinated dimethylamino group have been structurally characterized. The structure of the title compound, (I), represents the first example of a structure having an uncoordinated side chain. The structural
information is therefore valuable as it allows correlation of a set of NMR data with this type of structure. Thus, in future, comments about the coordination mode of the dimethylamino group can be made on the basis of NMR data with higher reliability.

(I)

The title molecule consists of two symmetrical halves, each containing a $\mathrm{Cp}^{\#}$ Mo unit and two carbonyl groups. The side chains do not coordinate to the central metal atoms and lie on opposite sides of the Mo-Mo axis. The existence of an $\mathrm{Mo} \equiv \mathrm{Mo}$ triple bond is inferred from the bond length of 2.510 (1) \AA, compared with the Mo-Mo single-bond length in $\left[\mathrm{CpMo}(\mathrm{CO})_{3}\right]_{2}$ of 3.235 (1) \AA (Adams, Collins \& Cotton, 1974) and the $\mathrm{Mo} \equiv$ Mo triple-bond length in $\left[\mathrm{CpMo}(\mathrm{CO})_{2}\right]_{2}$ of 2.448 (1) \AA (Klinger, Butler \& Curtis, 1975). All other

Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids. H atoms are omitted for clarity.
data are within expected ranges. In contrast to the structure of $\left[\mathrm{CpMo}(\mathrm{CO})_{2}\right]_{2}$, in which the $\mathrm{Mo}-\mathrm{Mo}-$ Cp angle is nearly 180° (Klinger, Butler \& Curtis, 1975), here a smaller Mo-Mo- Cp^{*} angle (161.0°) is observed. A similar value (159°) has been reported for the $\mathrm{Cr}-\mathrm{Cr}-\mathrm{Cp}^{*}$ angle in $\left[\mathrm{Cp} * \mathrm{Cr}(\mathrm{CO})_{2}\right]_{2}$ (Potenza, Giordano, Mastropaolo \& Efraty, 1974).

Experimental

Synthesis of the title compound was carried out by refluxing an n-octane solution of equal amounts of $\mathrm{Mo}(\mathrm{CO})_{6}$ and free ligand $\mathrm{Cp}^{\#} \mathrm{H}$ for 20 h . Crystals suitable for X-ray diffraction were obtained by recrystallization from a hot n-hexane solution (Jutzi, Dahlhaus \& Kristen, 1993).

Crystal data

$\left[\mathrm{Mo}_{2}\left(\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{~N}\right)_{2}(\mathrm{CO})_{4}\right]$
Mo $K \alpha$ radiation
$M_{r}=688.55$
Monoclinic
$P 2_{1} / n$
$a=9.561$ (2) \AA
$b=16.723$ (4) \AA
$c=10.536(3) \AA$
$\beta=115.87(2)^{\circ}$
$V=1515.8(6) \AA^{3}$
$Z=2$
$\lambda=0.71073 \AA$
Cell parameters from 27
reflections
$\theta=2.4-12.5^{\circ}$
$\mu=0.863 \mathrm{~mm}^{-1}$
$T=178(2) \mathrm{K}$
Irregular
$0.40 \times 0.30 \times 0.05 \mathrm{~mm}$ Red
$D_{x}=1.509 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens $P 2_{1}$ diffractometer
ω scans
Absorption correction: ψ scans (SHELXTL-Plus: Sheldrick, 1990)
$T_{\text {min }}=0.388, T_{\text {max }}=$ 0.559

3695 measured reflections
3495 independent reflections
$R_{\text {int }}=0.0666$
$\theta_{\text {max }}=27.57^{\circ}$
$h=0 \rightarrow 12$
$k=0 \rightarrow 21$
$l=-13 \rightarrow 12$
5 standard reflections monitored every 100 reflections intensity decay: 2%
1630 observed reflections $[I>2 \sigma(I)]$

Refinement

Refinement on F^{2}
$R(F)=0.0628$
$w R\left(F^{2}\right)=0.2220$
$S=1.009$
3483 reflections
178 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0992 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=1.503 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-1.359 \mathrm{e}^{-3}$
Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=$				$1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$
	x	y	z	U_{eq}
	x	$0.00177(4)$	$0.11984(6)$	$0.0214(2)$
Mol	$0.11331(7)$	$0.1802(4)$	$0.0366(7)$	$0.053(2)$
O1	$0.0261(8)$	$0.0007(4)$	$0.1983(7)$	$0.047(2)$

N1	$0.5966(9)$	$-0.2173(5)$	$0.1242(8)$	$0.042(2)$
C1	$0.3803(9)$	$0.0135(5)$	$0.2152(9)$	$0.029(2)$
C2	$0.3375(10)$	$0.0495(5)$	$0.3146(9)$	$0.032(2)$
C3	$0.2752(11)$	$-0.0096(5)$	$0.3642(7)$	$0.038(2)$
C4	$0.2721(10)$	$-0.0857(6)$	$0.2949(9)$	$0.035(2)$
C5	$0.3416(9)$	$-0.0688(5)$	$0.2027(8)$	$0.027(2)$
C6	$0.4580(11)$	$0.0571(6)$	$0.1380(10)$	$0.042(2)$
C7	$0.3707(11)$	$0.1342(5)$	$0.3684(10)$	$0.040(2)$
C8	$0.2195(10)$	$-0.0020(6)$	$0.4803(9)$	$0.036(2)$
C9	$0.2186(12)$	$-0.1655(5)$	$0.3211(10)$	$0.041(2)$
C10	$0.0524(10)$	$0.1121(6)$	$0.0606(9)$	$0.034(2)$
C11	$-0.0658(9)$	$0.0006(5)$	$0.1614(8)$	$0.028(2)$
C12	$0.3803(10)$	$-0.1295(5)$	$0.1190(9)$	$0.035(2)$
C13	$0.5491(11)$	$-0.1591(6)$	$0.2004(10)$	$0.044(2)$
C14	$0.5250(15)$	$-0.2944(7)$	$0.1182(15)$	$0.069(4)$
C15	$0.7634(12)$	$-0.2246(7)$	$0.1891(13)$	$0.065(3)$

Table 2. Selected geometric parameters $\left(\AA^{\circ}{ }^{\circ}\right)$

Mol-Mol ${ }^{1}$	2.5101 (14)	Mol-C4	2.324 (8)
$\mathrm{Mol}-\mathrm{Cl}$	2.307 (7)	Mol-C5	2.292 (8)
Mol-C2	2.368 (8)	Mol-C10	1.954 (9)
Mol-C3	2.363 (7)	Mol-C11	1.944 (8)
C10-Mol-C11	$85.0(4)$ metry code	$\text { i) }-x,-y$	

All non-H atoms were refined anisotropically. H atoms were included in calculated positions using a riding model $[U(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}$ for CH_{2} groups and $U(\mathrm{H})=1.5 U_{\text {eq }}$ for CH_{3} groups]. Methyl groups were constrained to idealized symmetry with fixed $\mathrm{C}-\mathrm{H}$ distances and were allowed to rotate about the $\mathrm{C}-\mathrm{C}$ axes.

Data collection: P3 Data Collection Program (Siemens, 1989). Cell refinement: SHELXTL-Plus (Sheldrick, 1990). Data reduction: SHELXTL-Plus. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL-Plus.

This work was supported by the Fritz ter MeerStiftung (scholarship for MOK), BASF AG and the Fond der Chemischen Industrie.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: NA1159). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Adams, R, D., Collins, D. M. \& Cotton, F. A. (1974). Inorg. Chem. 13, 1086-1090.
Jutzi, P. \& Dahlhaus, J. (1993). Synthesis, pp. 684-686.
Jutzi, P., Dahlhaus, J. \& Kristen, M. O. (1993). J. Organomet. Chem. 450, C1-C3.
Jutzi, P., Kristen, M. O., Dahlhaus, J., Neumann, B. \& Stammler, H.-G. (1993). Organometallics, 12, 2980-2985.

Jutzi, P., Kristen, M. O., Neumann, B. \& Stammler, H.-G. (1994). Organometallics, 13, 3854-3861.
Klinger, R. J., Butler, W. \& Curtis, M. D. (1975). J. Am. Chem. Soc. 97, 3535-3536.
Potenza, J., Giordano, P., Mastropaolo, D. \& Efraty, A. (1974). Inorg. Chem. 13, 2540-2544.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
Sheldrick, G. M. (1990). SHELXTL-Plus. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Univ. of Göttingen, Germany.

Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
Siemens (1989). P3 Data Collection Program. Release 4.12. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1995). C51, 2498-2501
> (η^{5}-Cyclopentadienyl)oxo(peroxo-O, O^{\prime})(trimethylsilylmethyl)tungsten and the Related (η^{5}-Pentamethylcyclopentadienyl)-oxo(peroxo-O,O')(trimethylsilylmethyl)-tungsten-Tetracyanoethylene (2/1) Complex

Peter Legzdins, Everett C. Phillips, James Trotter and Vivien C. Yee
Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1

(Received 13 December 1994; accepted 7 April 1995)

Abstract

The two organometallic molecules, $\left[\mathrm{WO}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{4} \mathrm{H}_{11}-\right.\right.$ $\left.\mathrm{Si})\left(\mathrm{O}_{2}\right)\right]$ and $\left[\mathrm{WO}\left(\mathrm{C}_{10} \mathrm{H}_{15}\right)\left(\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{Si}\right)\left(\mathrm{O}_{2}\right)\right]$ [2:1 complex with $\mathrm{C}_{6} \mathrm{~N}_{4}$ (TCNE, ethenetetracarbonitrile)], have similar piano-stool structures and separate oxo and peroxo ligands $[\mathrm{W}-\mathrm{O}(0 \times \mathrm{o})=1.69(3)$ and 1.727 (7), $\mathrm{W}-\mathrm{O}$ (peroxo) $=1.91$ (mean), $\mathrm{O}-\mathrm{O}=$ 1.43 (3) and $1.426(11) \AA]$. The $2: 1$ complex contains a TCNE molecule disordered over two sites, sandwiched between two organometallic molecules, with O(peroxo) \cdots C(TCNE) distances of 2.94(2)-3.33 (2) \AA (the asymmetric unit is one $\mathrm{Cp}{ }^{*} \mathrm{~W}$ molecule and half of a TCNE molecule disordered over two sites).

Comment

The organometallic complex molecules $[\mathrm{CpW}(\mathrm{O})$ $\left.\left(\mathrm{O}_{2}\right)\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)\right]$, (1), where Cp is $\mathrm{C}_{5} \mathrm{H}_{5}$, and $\left[\mathrm{Cp}^{*} \mathrm{~W}(\mathrm{O})\left(\mathrm{O}_{2}\right)\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)\right]$, where $\mathrm{Cp}{ }^{*}$ is $\mathrm{Me}_{5} \mathrm{C}_{5}$ and which forms the $2: 1$ complex, (2), with TCNE, have very similar structures (see Fig. 1) and dimensions

(1)

(2)
(Table 2); the dimensions are also similar in the uncomplexed Cp * compound, except for possible oxo/peroxo disorder (Faller \& Ma, 1988). Both have piano-stool structures, with separate oxo and peroxo ligands. The $\mathrm{W}-\mathrm{O}$ (oxo) bond distances [1.69(3) and 1.727 (7) \AA for (1) and (2), respectively] correspond to double bonds, while the $\mathrm{W}-\mathrm{O}$ (peroxo) length $[1.87$ (3) and 1.92 (3) \AA for (1) and 1.896 (8) and 1.931 (7) \AA for (2)] are characteristic for single bonds (Allen et al., 1989). The O-O(peroxo) bond distances [1.43 (3) for (1) and 1.426 (11) \AA for (2)] are close to normal singlebond lengths, and the peroxo ligands are symmetrically bonded to W . The dimensions of the alkyl ligands are normal (Allen et al., 1987, 1989): W- $\mathrm{CH}_{2}=2.14$ (4) and 2.156 (11), $\mathrm{CH}_{2}-\mathrm{Si}=1.85$ (4) and 1.849 (11), Si$\mathrm{Me}=1.81$ (4)-1.88 (4) and $1.83(2)-1.87$ (2) \AA for (1) and (2), respectively; the $\mathrm{W}-\mathrm{CH}_{2}-\mathrm{Si}$ angles are somewhat enlarged [119(2) and $117.6(6)^{\circ}$], probably as a result of steric interactions between the methyl groups and oxo ligands. The Cp ligand dimensions are rather inaccurately determined as a result of the high thermal motion (or possible disorder). The rings are approximately planar. In (1), deviations from the mean ring plane range from 0.02 (6) for C 2 to 0.11 (5) \AA for C 4 . In (2), deviations of the ring atoms from their mean plane range from 0.002 (9) for C 4 to 0.017 (9) \AA for C 2 ; the

(a)

(b)

Fig. 1. Views of the molecular structures of $(a)(1)$ and $(b)(2)$, with 50% probability ellipsoids.

